
ACPD
9, 14189–14233, 2009

Atmospheric
nitrogen budget in

Sahel

C. Delon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 9, 14189–14233, 2009
www.atmos-chem-phys-discuss.net/9/14189/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Atmospheric nitrogen budget in Sahelian
dry savannas
C. Delon1, C. Galy-Lacaux1, A. Boone2, C. Liousse1, D. Serça1, M. Adon1,3,
B. Diop4, A. Akpo5, F. Lavenu*,†, E. Mougin6, and F. Timouk6

1Laboratoire d’Aérologie, Université de Toulouse and CNRS, Toulouse, France
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Abstract

The atmospheric nitrogen budget depends on emission and deposition fluxes both as
reduced and oxidized nitrogen compounds. In this study, a first attempt at estimat-
ing the Sahel nitrogen budget for the year 2006 is made, through measurements and
simulations at three stations from the IDAF network situated in dry savanna ecosys-5

tems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3
gaseous concentrations, and wet deposition fluxes are calculated from NH+

4 and NO−
3

concentrations in samples of rain. Emission fluxes are estimated including biogenic
emission of NO from soils (an Artificial Neural Network module has been inserted into
the ISBA-SURFEX surface model), emission of NOx and NH3 from domestic fires and10

biomass burning, and volatilization of NH3 from animal excreta.
This study uses original and unique data from remote and hardly-ever-explored re-

gions. The monthly evolution of oxidized N compounds shows that deposition increases
at the beginning of the rainy season because of large emissions of biogenic NO (pulse
events). Emission of oxidized compounds is dominated by biogenic emission from soils15

(domestic fires and biomass burning account for 27% at the most, depending on the
station), whereas emission of NH3 is dominated by the process of volatilization. De-
position fluxes are dominated by gaseous dry deposition processes (58% of the total),
for both oxidized and reduced compounds. The average deposition flux in dry savanna
ecosystems ranges from 8.6 to 10.9 kgN ha−1 yr−1, with 30% attributed to oxidized com-20

pounds, and the other 70% attributed to NHx. The average emission flux ranges from
7.8 to 9.7 kgN ha−1 yr−1, dominated by NH3 volatilization (67%) and biogenic emission
from soils (24%). The annual budget is then balanced, with emission fluxes on the
same order of magnitude as deposition fluxes.

When scaled up to the Sahelian region (10◦ N:20◦ N, 15◦ W:10◦ E), the estimates of25

total emission range from 3.6 to 4.5 TgN yr−1 and total deposition ranges from 3.9 to
5 TgN yr−1. The N budget gives a net deposition flux ranging from 0.2 to 0.6 TgN yr−1.
If scaled up to the global scale (in the tropical band), it is possible to calculate a total
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budget of oxidized and reduced N compounds for dry savannas, with a global nitrogen
deposition flux ranging from 11.1 to 14.1 TgN yr−1, and a global emission flux ranging
from 10.1 to 12.5 TgN yr−1. These ecosystems contribute a significant amount (around
12%) to the global nitrogen budget.

1 Introduction5

Nitrogen is a key compound both as a nutrient for plants and animals and as an atmo-
spheric pollutant. In the atmosphere, several nitrogen trace compounds are present,
such as NO, NO2, HNO3, N2O and NH3, as well as particulate and aqueous forms
such as NO−

3 and NH+
4 . At the global scale, the reactive N cycle has been widely im-

pacted by human activities, notably for food production. Indeed, the creation of reactive10

nitrogen has increased by 120% since 1970 and reached 187 TgN yr−1 in 2005, which
is a consequence of the increase of the world population (Galloway et al., 2008). An-
thropogenic emissions of NOx are better quantified than natural emissions, and NH3
emissions from all sources and at all scales remain largely uncertain (Sutton et al.,
2007). Nitrogen emissions from the soil are the origin of the above mentioned gaseous15

products, whereas enrichment of nitrogen in the soil will take place through biological
nitrogen fixation, nitrogen wet and dry deposition or nitrogen fertilization (Vlek, 1981).
Reactive Nitrogen emissions are influenced by several environmental and physical pa-
rameters, such as soil temperature and moisture, soil pH, texture, wind speed, plant
cover, floristic composition (e.g. legumes) and N input (fertilization) (Williams et al.,20

1992; Yienger and Levy, 1995 and references therein; Potter et al., 1996; Bouwman et
al., 2002b; Meixner and Yang, 2004; Delon et al., 2007). In semi arid and arid regions,
limited water resources will have significant consequences on nitrogen cycling in the
soil and the atmosphere. The seasonal rainfall distribution leads to an accumulation of
N in soils during the dry season, and to large pulses of N emission at the beginning25

of the rainy season (Austin et al., 2004; Jaegle et al., 2004). Resulting emissions from
these pulse events release high quantities of NOx in the atmosphere, contributing to
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increased ozone formation in the troposphere and long range transport of ozone. In
Sahelian regions, (the part of West Africa defined as (10◦ N:20◦ N, 15◦ W:10◦ E) nitro-
gen emissions may come from different sources throughout the year. In this study, we
will focus on simulated biogenic soil emissions of NOx, calculated biomass burning and
domestic fuel emissions of NOx and NH3, and calculated volatilization of NH3 from an-5

imal manure. Neither industrial N sources nor N emissions from synthetic fertilization
are taken into account because of the remote location of the Sahel from big cities or in-
dustrial centres, and because synthetic fertilizers are either used sparingly or not at all
in this region of the world. Similar to emission, wet and dry deposition play an essential
role in determining the concentration of nitrogen compounds in the atmosphere, and10

the nitrogen input to the soil/plant system.
The IDAF (IGAC/DEBITS/AFrica) programme started in 1995 with the establishment

of 10 measurement sites representative of major African ecosystems. The objectives
of the programme are to study dry and wet deposition of important trace species and
more generally the biogeochemical cycles of key nutrients. In this way, the IDAF ac-15

tivity is based on high quality measurements of atmospheric chemical data (gaseous,
precipitation and aerosol chemical composition) on the basis of a multi-year monitor-
ing. Since 2005, the ORE (Environmental Research Observatory) IDAF has been part
of the AMMA (African Monsoon Mutidisciplinary Analyses) EOP (Extensive Observa-
tion period) and LOP (Long Observation period) program in West Africa, and within the20

SACCLAP program (South African Climate Change Air Pollution- PICS NRF/CNRS)
in South Africa. The IDAF network and the resulting scientific research have been
presented in several papers, such as Galy-Lacaux and Modi, 1998; Galy-Lacaux et
al., 2001; Yoboué et al., 2005; Galy-Lacaux et al., 2009. The objective of this study
is the calculation of the balance between N compounds emission and deposition, in25

order to quantify the atmospheric nitrogen budget in dry savannas. A focus will be
made in 3 study sites which are representative of rural semi-arid savannas: Banizoum-
bou (Niger, 13.33◦ N, 2.41◦ E), Katibougou (Mali, 12.5◦ N, 7.3◦ W) and Agoufou (Mali,
15.3◦ N, 1.5◦ W), for the year 2006 (see Fig. 1).
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In order to calculate N compound emission and deposition, and to quantify the distri-
bution of different emission sources, methods of calculation of emission and deposition
fluxes will be presented. The assumptions made to estimate each contribution will be
explained, as well as all sources of uncertainties.

In the following, the budget will be calculated first for oxygenated N compounds (NOx5

for emissions, NO2, HNO3 and NO−
3 for deposition) at the monthly and annual scale

for the year 2006, and second for NHx products (NH3, NH+
4 ) at the annual time scales.

Then, the total nitrogen compound budget will be calculated at the 3 IDAF stations, and
scaled up to the Sahelian regional scale (10◦ N:20◦ N, 15◦ W:10◦ E). A tentative budget
at the global scale for tropical regions with dry savanna ecosystems will be estimated.10

2 Material and methods

2.1 Deposition

The IDAF network is the French contribution to the international IGAC (International
Global Atmospheric Chemistry)/DEBITS (Deposition of Biogeochemically Important
Trace Species) program. The DEBITS committee has defined a set of experimental15

and analytical protocols to have comparable measurements from all the DEBITS sta-
tions. The IDAF network has adopted these protocols as well. Further information on
the IDAF network may be found at http://medias.obs-mip.fr/idaf/.

Continuous wet and dry deposition measurements have been performed in Bani-
zoumbou (13.3◦ N, 2.41◦ E, Niger) from 1994 until now, in Agoufou (15.3◦ N, 1.5◦ W,20

Mali) from 2004 to 2007, and in Katibougou (12.5◦ N, 7.3◦ W, Mali) from 1997 up to
now. Comprehensive descriptions of the stations can be found in Mougin et al. (2009)
for Agoufou, in Galy-Lacaux and Modi (1998) for Banizoumbou, and in Adon et al.
(2009) for Katibougou. Agoufou and Banizoumbou are part of the AMMA CATCH
(Couplage de l ’Atmosphère Tropicale et du Cycle Hydrologique) observatory. Bani-25

zoumbou is located in a rural and agro pastoral area of the Sahelian region of Niger,

14193

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://medias.obs-mip.fr/idaf/


ACPD
9, 14189–14233, 2009

Atmospheric
nitrogen budget in

Sahel

C. Delon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

approximately at 60 km from Niamey. Katibougou is located at 60 km from Bamako.
No major source of anthropogenic pollution influences the station. Agoufou is situated
towards the northern limit of the area reached by the West African monsoon.

The atmospheric nitrogen deposition budget estimated in this paper is based on
experimental measurements for the year 2006. Because of missing data for NH3 con-5

centrations in Agoufou during several months in 2006, a mean value (integrating mea-
surements performed during the years 2005, 2006 and 2007) was used for NH3 dry
deposition fluxes in Agoufou.

To estimate atmospheric nitrogen deposition, including both wet and dry processes,
we compiled the IDAF nitrogen data from gas and rain chemistry measurements. This10

study will give the relative contribution of dry and wet deposition processes to the total
nitrogen deposition in 2006.

2.1.1 Dry deposition

Gaseous measurements (NH3, HNO3, NO2) are monthly integrated samples using
passive sampling techniques following the work of Ferm et al. (1994). This technique15

has been tested in different tropical and subtropical regions (Ferm and Rodhe, 1997;
Carmichael et al., 2003; Martins et al., 2007). All samples of the IDAF west-central
African stations are brought to the Laboratory of Aerology (LA) in Toulouse, France, for
ionic chromatography analysis. All details and performances of IDAF passive samplers
are given in Martins et al. (2007).20

At each IDAF station, passive samplers have been exposed monthly in duplicate.
To give an indication of the precision of this sampling technique, the covariance of all
duplicate samples were calculated and found to be 20%, 9.8%, 14.3% for HNO3, NO2
and NH3, respectively. The covariances compare well with those reported by Martins
et al. (2007), at the Southern African sites, for the same pollutants (20%, 8.3%, 15.3%,25

for HNO3, NO2 and NH3, respectively. The average of the duplicate samplers was
used in all cases except when contamination of one of the samplers was suspected
(this happened in less than 5% of all data). The detection limit of the passive samplers
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was evaluated with the variations in the blank amounts of the impregnated filters and
found to be 0.05(±0.03) ppb for HNO3, 0.2(±0.1) ppb for NO2 and 1(±0.5) ppb for NH3,
respectively. For the HNO3 and NO2 measurements, 11.5% and 3.8% were below the
detection limit, respectively.

The dry deposition flux is the product of the measured concentration in the air (ppb)5

with the corresponding deposition velocity, which is estimated according to the site and
the species. Gaseous dry deposition of nitrogen has been calculated as the sum of dry
deposition fluxes of ammonia (NH3), nitric acid (HNO3) and nitrogen oxide (NO2).

Zhang et al. (2003) has calculated maximum deposition velocities for 26 different
land use categories. The most appropriate land use category for our study could be10

the desert, which has surface properties that are close to dry savanna ecosystems,
and present deposition velocity of 0.2–0.2 cm/s for NO2 2–3.3 cm/s for HNO3 and
0.1–1.5 cm/s for NH3 (the first value is for dry ecosystems, and the second value is for
wet ecosystems). As a comparison, Zhang et al. (2009) have calculated several dry
deposition velocities for nitrogen compounds at rural sites in Canada which are small15

values even above forests or grasslands (0.17 cm/s for NO2, 1.2 cm/s for HNO3 and
0.4 cm/s for NH3 as mean values for all referenced sites). If low values are found above
vegetated areas in Canada, we theorize that Sahelian ecosystems will not have high
deposition velocities. Considering that no deposition velocities have been measured
in dry savanna areas, the following values have been chosen (according to the above20

cited studies) in this work to calculate deposition fluxes: 0.2 cm/s for NO2, 1 cm/s
for HNO3, and 0.35 cm/s for NH3 as mean deposition velocities. It is obvious that
the choice of constant deposition velocities all year long will introduce supplementary
uncertainties in the deposition flux calculation, but this assumption is necessary to
achieve the calculation of the N budget with the available data and is consistent with25

temporal scale of gas measurements. Particulate N dry deposition (pNH+
4 and pNO−

3 )
is not taken into account in this budget. Indeed, Galy-Lacaux et al. (2003) have shown
that N dry deposition from particles have relatively low values (0.12±0.01, 0.08±0.01
and 0.06±0.01 kg N ha−1 yr−1, respectively, in semi-arid, humid savanna and forested
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ecosystems). One should note that N particulate dry deposition is smaller than that
of wet deposition by an order of magnitude. As far as the authors know, no other
particulate dry deposition measurements have been made in the remote regions of
Sahel.

2.1.2 Wet deposition5

An automatic precipitation collector specially designed for the IDAF network has been
installed at all stations. A local operator collects water from each rainfall event in a
Greiner tube (50 ml). Preserving the rainwater samples from contamination is an im-
portant issue since microbial input could modify its chemical composition. Samples
are refrigerated at 4◦C and preserved with 15 mg of thymol biocide or stored in a deep10

freeze environment. Ion Chromatography (IC) procedures are given in Galy-Lacaux
and Modi (1998). To calculate wet nitrogen deposition in African dry savannas for the
year 2006, we have compiled the annual Volume Weighed Mean (VWM) concentrations
of nitrate and ammonium from the precipitation collected at the 3 IDAF stations. The
computation of nitrate and ammonium wet deposition has been done according to the15

2006 annual rainfall for the studied sites. The rainfall depths registered at Banizoum-
bou (Niger), Katibougou and Agoufou (Mali) are 505.2 mm, 588.2 mm and 374 mm, re-
spectively. Nitrate and ammonium concentrations at the dry savannas sites are in the
upper range of all the African ecosystems, with values from 37 (in Banizoumbou) to 31
(in Katibougou) µeq L−1 of NH+

4 and a range of 7 (Banizoumbou) to 16 (Katibougou)20

µeq L−1 of NO−
3 (Sigha et al., 2003; Yoboué et al., 2005; Dentener et al., 2006).

The major source of precipitation nitrate content comes from natural NOx emissions
from soils, whereas NOx production from lightning plays a minor role for wet deposition
(Tost et al., 2007), and it is not taken into account in this budget. Nitrate concentration in
precipitation represents the final result of homogeneous and heterogeneous processes25

of nitrogenous gases and particles in the atmosphere and cloud water. Nitric oxide
(NO) is the major nitrogen compound released from savanna soils in the non-burning
season (Serça et al., 1998), and a large fraction of NO produced is oxidized in the
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atmosphere through photochemical reactions, into HNO3 or organic nitrates. HNO3,
which is extremely soluble in water, is thus easily scavenged by clouds. Galy-Lacaux
et al. (2001) have demonstrated that heterogenous processes between nitric acid and
mineral particles are present all over the African continent.

Ammonium content in precipitation results from inclusion of gaseous ammonia and5

particles containing NH+
4 in precipitating clouds. The highest values of ammonium

compounds in precipitation registered in the semi-arid regions have been attributed to
strong sources of ammonia from domestic and pastoral animals during the wet season
(Galy-Lacaux and Modi, 1998).

2.2 Emission10

2.2.1 NO biogenic emission from soils: model characteristics

Biogenic emissions from soils are derived from an Artificial Neural Network (ANN) ap-
proach. The resulting algorithm provides on line biogenic NO emissions and is devel-
oped in Delon et al. (2007). It is fully coupled to the Soil Vegetation ATmosphere (SVAT)
model ISBA (Interactions between Soil Biosphere and Atmosphere, Noilhan and Mah-15

fouf, 1996), and has been previously tested in the 3-D coupled chemistry-dynamics
model MesoNH-C (which uses surface scheme ISBA) to reproduce NO pulses after a
rain event in Niger (Delon et al., 2008). NO emissions from soils in ISBA are obtained
for the year 2006 at a spatial resolution of 0.5◦ and a time resolution of 3 h. In the follow-
ing sections, NO fluxes are averaged on a 3◦/3◦ window around each specific station.20

The simulated domain extends from 5◦ S to 20◦ N in latitude, and from 20◦ W to 30◦ E in
longitude, but only the Sahel region (15◦ W:10◦ E, 10◦ N:20◦ N) will be explored in this
study. The meteorological forcing, developed within the AMMA Land surface Model
Intercomparison Project (ALMIP), is obtained from a data set based on the merging
of ECMWF (European Centre of Medium Range Weather Forecast) atmospheric state25

variables, and TRMM-3B42 3-hourly data for the precipitation. LAND-SAF data is used
for downwelling longwave and shortwave radiative fluxes (Geiger et al., 2008; Huffman
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et al., 2007). A more comprehensive description of ALMIP may be found in Boone et
al. (2009).

The NO flux from soil is a non linear function of seven soil surface parameters: sur-
face Water Field Pore Space (WFPS), surface and deep soil temperatures, pH, sand
percentage, fertilisation rate and wind speed. Surface WFPS is deduced from the5

simulated soil surface moisture. Surface and deep soil temperatures are also calcu-
lated by the model. Wind speed is provided by the atmospheric forcing. The pH map
is obtained from IGBP-DIS (1998, http://www.sage.wisc.edu/atlas) soil data base, at a
spatial resolution of 0.5◦/0.5◦. Sand percentage is obtained from the ECOCLIMAP data
base (Masson et al., 2003), at a resolution of 1 km/1km.10

The fertilization rate provided to the model is based on the calculation of N released
by organic fertilization (i.e. cattle dung), for each country. Indeed, data bases of land
use do not provide enough information in the Sahel concerning synthetic fertilization.
Galloway et al. (2004) give an estimate of 2.5 Tg N yr−1 for the N input by fertiliza-
tion production for the whole African continent, and Bouwman et al. (1997) show no15

emission from synthetic fertilizer use in the Sahelian band (10–20◦ N). Schlecht and
Hiernaux (2004) state that manure from livestock is an important source of organic
matter and nutrients due to limited access to mineral fertilizers. These low assess-
ments corroborate the assumption that the use of synthetic fertilizers in the Sahel is
not a common feature, and can be neglected in our inventory.20

Therefore, significant work was done to develop our own data base for organic fertil-
ization for 23 countries of West and Central Africa which are contained in our simulation
domain. These countries are, in alphabetical order: Benin, Burkina Faso, Cameroon,
Chad, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon, Gambia,
Ghana, Guinea Bissau, Guinea, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria,25

Republic of Centre Africa, Senegal, Sierra Leone, Sudan, and Togo.
The N quantity released by livestock is calculated from Schlecht et al. (1998), in

gN head−1 day−1, for cows, sheep and goats. This estimate is multiplied by the num-
ber of animals per km2 in each country. The animal population is obtained from a
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FAO (Food and Agriculture Organization) report for the years 1985–1986 (Hoste et al.,
1988), and it was re estimated for the year 2006 as advocated in the report. The result-
ing inventory of N is introduced in the ANN algorithm as N input in kgN ha−1 hour−1.The
data needed to build this inventory are, however, a source of uncertainty. Even if the
number of livestock is readjusted for the year 2006, the N input calculated from Schlecht5

et al. (1998), which gives 45 kgN animal−1 yr−1 in a small region of Niger, remains low
when generalized to the West African region. Indeed, Mosier et al. (1998) gives an
estimate of 170 kgN animal−1 yr−1 for the whole African continent, and Bouwman and
Van Der Hoek (1997) gives an estimate of 130 kgN animal−1 yr−1 in developing coun-
tries. These differences may be explained first because poultry, camels and donkey10

excreta are not taken into account in Schlecht et al. (1998) study, and second because
this study is limited to a small region in Niger where the acidic sandy soils, which are
predominant in the region, are inherently poor in N (Schlecht et al., 2004). Compared
to the West African region, they do not provide a representative uptake of N in food
for grazing. Therefore, we have taken an intermediate value of 70 kgN animal−1 yr−1

15

for cows and 20 kgN animal−1 yr−1 for sheep and goats for our study domain, which
yields a total N input of 9 kgN ha−1 yr−1 in Mali and 7 kgN ha−1 yr−1 in Niger. (These
two countries are of particular interest because of the location of the IDAF stations).

However, this estimate remains low when compared to other information sources
(where available). The Ministry of Agriculture in Mali (Direction Nationale de la Pro-20

duction et des Industries Animales, DNPIA) indicate a number of 29 340 000 for cows,
sheep and goats (unpublished data) for the whole country in 2006 (F. Gangneron, per-
sonal communication, 2009). The estimate given by the FAO (and re-adjusted for the
year 2006) is only 17 770 000, which is approximately 40% less. We can therefore
reasonably suppose that the estimate from the FAO is underestimated for some other25

countries.
Furthermore, the majority of the livestock population is concentrated in regions

where people live, i.e. the human and livestock population is more significant in the
southern part of Mali and Niger than in the northern part. As a consequence, and con-
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sidering that the livestock population is underestimated by the FAO inventory, we have
chosen to increase the N input by 40% in a band extending from 12◦ N to 16◦ N, without
decreasing the input northward in order to be more in accordance with the above cited
studies. This assumption leads to a total N input of 12 kgN ha−1 yr−1 in southern Mali,
and 10 kgN ha−1 yr−1 in southern Niger from animal manure.5

Half of this N will be used as input for the calculation of NO biogenic emissions by the
ANN algorithm in the ISBA-SURFEX surface model, the other half will be used for the
calculation of NH3 volatilization (the justification for this distribution is explained below,
Sect. 2.2.2).

Figure 1 shows the NO biogenic flux from soils in the simulation domain in terms10

of the annual mean in figure 1a and JJAS (June July August September) in Fig. 1b.
Indeed, JJAS corresponds to the wet season in West Africa, when the monsoon flux
(cool and wet air coming from the ocean) reaches its northernmost position bringing
humid air and intense precipitation in the Sahel. As mentioned in Yienger and Levy,
1995; Jaegle et al., 2004; Butterbach-Bahl et al., 2004 and references cited therein,15

NO emission is principally driven by soil moisture in tropical regions, and the most
intense emissions occur in the Sahel when the first rains fall on the very dry soils. As
shown in Fig. 1b, soil emissions in the Sahel reach their strongest values during the
rainy season from June to September. In this study, we will only focus on the Sahelian
region (10◦ N:20◦ N, 15◦ W:10◦ E) and the magnitude of fluxes in wet savanna or forests20

areas or other tropical ecosystems will not be discussed here.

2.2.2 NH3 emission by volatilization

Ammonia is formed in soils from biological degradation of organic compounds and
ammonium, as represented by the Eq. (1):

NH+
4 (aq) → NH3(aq) → NH3(g) → NH3(atm) (1)25

Where (aq) stands for aqueous, (g) for gaseous and (atm) for atmospheric loss.
NH+

4 (aq) depends on soil cation exchange reactions, soil moisture content and net min-
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eralization. The concentration of NH3(aq) depends on ammoniacal N, temperature and
pH. The rate of gas dispersion in the natural environment depends on the temperature
gradient, and wind speed (Vlek, 1981). After NH3 is emitted to the atmosphere, each
nitrogen atom can participate in a sequence of effects, known as the nitrogen cascade
in which a molecule of NH3 can, in sequence, impact atmospheric visibility, soil acidity,5

forest productivity, terrestrial ecosystem biodiversity, stream acidity, coastal productiv-
ity (Galloway and Cowling, 2002), soil acidification and eutrophication (Bouwman and
Van Der Hoek, 1997).

The current annual NH3 emission in developing countries of 15 TgN accounts for
2/3 of the global emissions from animal excreta. The fraction of the N excretion that10

is lost as NH3 ranges from 10 to 36%, depending on animal-waste management and
animal category (Bouwman and Van Der Hoek, 1997; Bouwman et al., 1997). More re-
cently, Bouwman et al. (2002a) stated that 25, 28 and 33% of N use in Western Africa
is released as NH3 in intensive grasslands, upland crops and wetland rice, respec-
tively. However, the difficulty of obtaining reliable data concerning the use of animal15

manure, and management practices in tropical countries leads to uncertainties in es-
timating the NH3 loss, particularly in semi-arid regions like the Sahel. However, one
can suppose that better conditions are encountered in the Sahel region which favours
NH3 volatilization, such as high temperatures, low soil moisture and bare soil surfaces.
As a consequence, 50% of loss rate has been applied to the input of N by animal20

manure previously prescribed for the calculation of NO emissions. This leads to a N-
NH3 volatilization estimated at 6 kgN ha−1 yr−1 in southern Mali, and 5 kgN ha−1 yr−1

in southern Niger. Bouwman et al. (1997) estimate the emission from domesticated
animals in the Sahelian band between 0.5 and 5 kgN ha−1 yr−1 for the year 1990.

2.2.3 NOx and NH3 emission from biomass burning25

Global biomass burning inventories for gases and particles are available from Jan-
uary 2005 to December 2006 on the Laboratoire dÁerologie website (http://www.aero.
obs-mip.fr:8001/). The available spatial resolution is 1 km/1 km, and the time scale is
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daily. These global inventories use the L3JRC burnt area product based on the SPOT-
VGT vegetation satellite and Global Land Cover (GLC) vegetation map, together with
data on biomass densities and burning efficiencies. Such data, which were not avail-
able for the GLC2000 vegetation types but for the UMD (Hansen et al., 2000) global
land cover product (Michel et al., 2005) have been established from correspondences5

between the 13 UMD vegetation classes and GLC2000 vegetation classes (Mieville
et al., 2009). Emission factors for gaseous species were chosen following Andreae
and Merlet (2001). In the present study, we used the inventories for NO, NO2 and
NH3 species in the region of interest (−5 to 20◦ N, −20 to 30◦ E). Monthly means and
averages in a 5◦/5◦ window around each specific station (to ensure a sufficient sam-10

pling of fire events) are used to evaluate the potential impact of biomass fires at the
local/regional scale.

Long range transport of nitrogen emissions from remote fires over southern Africa
are not considered here due to the northward position of the stations in dry savanna
areas. Indeed, Mari et al. (2008) and Sauvage et al. (2007) have shown that the impact15

of fire emissions occurring in the Southern Hemisphere from June to September was
limited to coastal regions in the gulf of Guinea, and did not influence sites to the north.

2.2.4 NOx and NH3 emission from domestic fires

Combustion of biofuel is mainly used for cooking in the Sahel. Biofuel use provides
a constant emission all year long and is a potential source of trace gases. Ludwig et20

al. (2003) (and references therein) show that 0.5 TgNO/yr is emitted over the African
continent due to biofuel consumption. In the present study, NOx and NH3 emission
from domestic fires uses the methodology from Junker and Liousse (2008), for the
most recent existing year (2003). Due to a lack of knowledge of the emission factor
as a function of countries, fuels, activity, technology/norm combinations, this method-25

ology is based on a lumping procedure to account main factors of vulnerability. Nine
emission factors are defined for each fuel category, and 3 main activities are consid-
ered (traffic, domestic, industrial), with 3 levels of technology linked to each countryś
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development level (developed, semi-developed, developing). Reference NOx emission
factors values were given by Andreae and Merlet (2001), and on the 2 following web-
sites: http://www.naei.org.uk/reports.php, and http://www.transport.govt.nz/.

NH3 emissions factors are also given in Andreae and Merlet (2001). Consumption
data are given by the United Nations database. Annual emissions are then calculated5

country by country, and then gridded at 25 km/25 km resolution (Assamoi and Liousse,
2009). The monthly input of nitrogen compounds is therefore constant all year long,
and is averaged over a 5◦/5◦ window around each specific station to consider the lo-
cal/regional impact of these emissions.

3 Results and discussion10

As mentioned in Sect. 2.1, deposition fluxes (dry+wet) are estimated from concen-
tration measurements at the IDAF stations. All deposition fluxes are calculated in
kgN ha−1 yr−1 and compared to emission fluxes in the same unit. Oxidized and reduced
N compounds will be first treated separately. Then, a total budget will be estimated at
the annual scale.15

3.1 Monthly evolution of Nitrogen oxidized compounds

Nitric oxide (NO) and nitrogen dioxide (NO2) react rapidly in the atmosphere and are re-
ferred to jointly as NOx. In turn, NOx can be incorporated into organic compounds such
as peroxyacetyl nitrate (PAN) or alkyl nitrate, or further oxidized to HNO3. Gas-phase
HNO3 can be converted to aerosol nitrate (NO−

3 ) (e.g., by reaction with ammonia). PAN20

can convert back into NO2, and in hot temperature conditions its lifetime is short (few
hours), so concentrations may remain low despite abundant photochemical radicals
that promote PAN formation (Munger et al., 1998). We can therefore reasonably con-
sider that the emission of NO (both biogenic and anthropogenic) at the surface is the
beginning of the formation of all other reactive oxidized nitrogen compounds in the at-25
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mosphere. Non reactive N compounds (N2, N2O, N2O5) are not included in the budget,
because emission fluxes of these compounds in arid regions are negligible. According
to Meixner and Yang (2004), N2O fluxes from semi-arid soils are expected to be low,
and those from arid soils are very low, due to the fact that N2O emission is favoured
by denitrification processes at high soil moisture content. Galbally et al. (2008) (and5

references therein) suggest, however, that 5% of the global soil emissions of N2O from
agricultural disturbances (i.e. land conversion to agriculture) may occur in semi arid and
arid zones. This fraction is considered to be low, hence N2O emissions are not consid-
ered. Organic compounds such as PAN are also omitted from this budget, assuming
that they are converted into NO2 and that their concentrations are negligible in non10

polluted areas (around 100 ppt, Seinfeld and Pandis, 1998). As a consequence in this
study, the total NOx emission flux is defined as the sum of biogenic NO soil emission
flux+biomass burning NOx flux+domestic fire NOx flux. It is compared to deposition
flux of oxidized components, defined as the sum of dry deposition of NO2+HNO3 in the
gas phase, +NO−

3 wet deposition flux.15

Figure 2 presents the monthly evolution of emission and deposition oxidized N fluxes
in Agoufou, Banizoumbou and Katibougou. Emission and deposition fluxes are similar
during the wet season. Mean fluxes for each station at each season are reported in
Table 1. During the dry season, emission fluxes are larger than deposition fluxes, but
this is not representative of a real physical effect and can be easily explained: the20

emission module is calibrated such that it never attains a null emission, which leads to
an overestimated numerical background noise and an overestimate of emission during
the dry season. This default should be corrected in a future version of the emission
module.

The maximum emission value is close to the maximum deposition during the wet25

season at all stations, and the second maximum observed in Katibougou and Bani-
zoumbou in November corresponds to fire emissions, which imply an increase in NOx
fluxes. This second maximum does not appear in deposition fluxes, because HNO3
deposition fluxes, which are superior to NO2 fluxes, do not increase with fire emission
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increase. The similar orders of magnitude observed between emission and deposition
both in wet and dry seasons leads to the conclusion that NO2 and HNO3 deposition
velocities have been correctly estimated for the region.

However, note the time lag between the beginning of emission and deposition fluxes
at all stations except in Katibougou. Strong deposition fluxes begin at the very be-5

ginning of the wet season (usually around May in dry savanna areas, depending on
the station) due to the pulse emission flux produced over very dry soils when the first
rains fall (Johansson et al., 1988; Yienger and Levy, 1995; Otter et al., 1999; Yan et
al., 2005; Delon et al., 2008). Measurements in the 3 stations show that the NO2
concentration at the surface has a first maximum at the beginning of the rainy season10

(C. Galy-Lacaux, personal communication, 2009). In the model, emissions begin with
a one month lag (compared to deposition) in Agoufou and Banizoumbou, and on time
at Katibougou, where the beginning of simulated emissions corresponds to that of the
measured deposition, but with less intensity.

The reason for this time lag resides in the minimum rainfall amount needed by the15

emission module to initiate NO fluxes. Indeed, if this threshold (close to 10 mm for one
rain event) is not reached, the soil is not wetted enough to produce sufficient emissions.
The quantity of rainfall is crucial for the module to initiate strong emissions at the begin-
ning of the rain season. In situ measurements show that such a high threshold is not
necessary, and the sensitivity of the emission module should be modified (i.e. thresh-20

old decreased. This modification will be considered in a further version of the module).
In the forcing, the quantity of rainfall is respected, but it remains difficult to compare
point rainfall measurements to a satellite-based product at a 0.5 degree spatial scale,
especially because of the mostly convective nature of the rainfall which results in low
spatial correlation length scales over this region (e.g. Ali et al., 2003). Furthermore, an25

effect of smoothing could reinforce the problem. A sensitivity test has been made to
give some proofs to this statement, and we have tried to reduce the sensitivity of the
biogenic emission flux algorithm to the quantity of rainfall by a factor 2, i.e. we have
doubled the precipitation.
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Figure 3 shows the result of this test. Compared to Fig. 2, it is obvious that this
test does not have any realistic justification, because the surface energy budget will
be drastically changed and will have non expected consequences on the results (for
example, if the quantity of rain increases, the surface temperature will decrease and
the fluxes will also change). However, this test helps to conclude that if the quantity of5

rain is high at the beginning of the rainy season, the emissions will begin early. That
is verified in Banizoumbou and Katibougou. In Agoufou, the northernmost position,
a time lag of 1 month subsists. The quantity of rainfall decreases when the latitude
increases, and when reaching the northern limit of the ITCZ (Inter Tropical Covergence
Zone) position, the emission module has less rainfall available to ensure an immediate10

emission flux. As stated before, an adjustment of the threshold in the emission module
is necessary to provide sufficient NO emission from soils at the beginning of the rainy
season.

In the following sections, the emission flux estimate will be deduced from the real
precipitation forcing.15

The comparison of these two way fluxes in Fig. 2 at the monthly scale shows a
good agreement between emission and deposition magnitude, while underscoring the
difficulties of analysing the nitrogen budget in such remote areas where too few mea-
surements are available. Emission modelling presents an alternative to this lack of
measurements, but many questions remain concerning, for example, the quantity of ni-20

trogen contained in the soils, or the power of emissions after the first rainfall in semi-arid
regions. However, the joint exploitation of IDAF measurements and modelling results
gives a unique opportunity to provide a nitrogen budget in Sahelian ecosystems. In
the following, we will try to evaluate the contribution of biogenic and fire emissions to
atmospheric deposition at the annual scale, both for oxidised and reduced nitrogen25

compounds.
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3.2 Annual and seasonal budget of N oxidised compounds

Figure 4 shows the distribution of the N oxidized component emission fluxes (a) and
deposition fluxes (b), for the wet season. The same repartition is given in Fig. 5a and b
but for annual means in the three dry savanna stations.

It is obvious from these figures that the emission flux is dominated by the biogenic5

part, both in the wet season and for the annual mean. Even by decreasing the biogenic
flux during the dry season (because of the numerical overestimation mentioned above),
the emission flux will keep the same shape. Mean values for each season are reported
in Table 1. Emission fluxes at the annual scale range from 1.7 to 3.2 kgN ha−1 yr−1.
These estimates are in the range of emission fluxes reported by Meixner and Yang10

(2004), which range from 0.02 to 34 kgN ha−1 yr−1, in semi arid and arid ecosystems.
In Banizoumbou, measured emission fluxes up to 1.8 kgN ha−1 yr−1 have been reported
by Le Roux et al. (1995) and Serça et al. (1998).

In Fig. 4b and Fig. 5b, dry deposition appears to be 1/2 to 2/3 of the total deposition,
with the remaining 1/3 being wet deposition. This has already been observed in dry15

savanna stations and other IDAF stations in West African wet savanna (Galy-Lacaux
et al., 2003).

Large deposition fluxes are observed in Katibougou and Agoufou because of high
wet deposition of NO3. Katibougou, which is the southernmost station, receives more
rainfall than Banizoumbou and Agoufou, which could explain the high wet deposition20

flux. But in Agoufou, the strong deposition flux in the wet season can only be explained
by significant biogenic emissions at the beginning of this season which are not very well
reproduced by the model. Figures 4a and 5a show that no biomass burning contribution
appears in Agoufou, due to the small quantity of biomass available during the dry
season. NO2 concentration measurements do not show any increase in Agoufou in25

that season (Adon et al., 2009). The quantity of N available in the soil is not part of the
systematic measurements in IDAF stations, but measurements in the Gourma region
(Diallo and Gjessing, 1999) do not reflect any strong reservoir of N. The release of
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nitrogen compounds in Agoufou specifically (because of the reduced rainfall amount)
and other dry savanna stations seems to be very powerful. Preliminary explanation
could lie in the N input from N-fixing crusts of cyanobacteria and lichens (Barger et
al., 2005), and N-fixing plants and trees (e.g. Acacia). Meixner and Yang (2004) state
that despite the fact that deserts have low plant productivity, inorganic nitrogen can5

accumulate in desert and semi-desert soils during long dry periods.
Generally speaking, the deposition fluxes of oxidised N compounds in dry savanna

stations is the consequence of strong biogenic emission fluxes in the wet season. In-
deed, the contribution of emissions from biomass burning at the annual scale is only
19% and 24% of the total oxidised N deposition flux, respectively, in Banizoumbou and10

Katibougou, and the contribution of domestic fires is negligible.

3.3 Annual and seasonal budget of reduced compounds

The dry and wet deposition of NH3 and NH+
4 will be referred to as NHx in the following.

The calculation of NH3 volatilisation has already been developed in Sect. 2.2.2. The
subsequent NH3 volatilization flux has been estimated to be 6 kgN ha−1 yr−1 in south-15

ern Mali, and 5 kgN ha−1 yr−1 in southern Niger, whatever the season. This assumption
is obviously not exact because of seasonal variations in the absorption and release de-
pending on soil humidity, wind speed, and food quality for cattle. Owing to the lack of
measurements in remote Sahelian areas, the lack of statistical data on cattle reparti-
tion and nitrogen content leads to many assumptions, implying of course a high level of20

uncertainty in determining the exact quantity of NHx released. But the relative level of
volatilization from excreta compared to other sources of NH3 is respected, when com-
pared to emissions at the global scale (Bouwman et al., 1997; Galloway and Cowling,
2002). Figure 6 shows the annual repartition of emission and deposition NHx fluxes.
Mean values for each station are given in Table 2. The mean NHx emission flux is25

6.0±0.5 kgN ha−1 yr−1 and is dominated by the volatilization flux. The mean deposition
flux (dominated by dry deposition processes) is 5.8±0.6 kgN ha−1 yr−1. These values
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are of the same order as deposition fluxes calculated in a tropical pasture site in Brazil,
giving a range of NH3 fluxes between 6 and 12 kgN ha−1 yr−1 (Trebs et al., 2006).

3.4 Annual budget of oxidized and reduced nitrogen compounds at each sta-
tion, and scaled up to the regional/global scale

Figures 7 and 8 show the total deposition and emission fluxes of oxidized and reduced5

nitrogen compounds at the annual scale for each station. These figures allow the
synthesis between Sect. 3.2 and 3.3, and show that the maximum (wet and dry) de-
position and emission fluxes are dominated by the NH3 participation, with respectively
66%, 78% and 73% at Katibougou, Banizoumbou and Agoufou stations for wet and
dry deposition flux, and respectively 67%, 67% and 78% at Katibougou, Banizoumbou10

and Agoufou for the emission. Whelpdale et al. (1997) have estimated that the con-
tribution of oxidized nitrogen to the total deposition was about 23% in arid savannas,
which corroborates our results.

The second most important emission flux is given by the biogenic NO from soils.
Table 3 summarizes the mean N emission and deposition fluxes at the annual scale15

for each station. The average deposition flux, attributed to dry savanna ecosystems,
is 9.4(±1.3) kgN ha−1 yr−1, and the average emission flux is 8.5(±1.0) kgN ha−1 yr−1.
These fluxes are of the same order of magnitude as deposition fluxes in temperate
rural site reported by Zhang et al. (2009), ranging from 4.3 to 11 kgN ha−1 yr−1. De-
position fluxes are quite homogeneous from one station to another. Common charac-20

teristics (same climate regime, same type of emission sources and amplitude, same
type of vegetation and soil characteristics) deduced from these 3 stations, can be at-
tributed to dry savanna ecosystems, and may also be scaled up to the Sahelian re-
gion (10◦ N:20◦ N, 15◦ W:10◦ E, i.e. 4.6×106 km2). Emission characteristics also give
common features from one site to another, despite the stronger contribution of NH325

volatilization in Agoufou, due to the very weak contribution of biomass burning and
biofuel fires in this remote area.

It is therefore possible from these two-way fluxes estimates to give an N annual
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budget of dry savanna Sahelian ecosystems.
Figure 9 gives the mean repartition that should be observed in the Sahel concerning

nitrogen compound emission and deposition fluxes. Total deposition has been esti-
mated to range between 3.9 and 5 TgN/yr (with a mean value of 4.3±0.6, 3.1 TgN/yr
attributed to reduced compounds, 1.2 TgN/yr attributed to oxidized compounds). The5

emission has been estimated to be between 3.6 and 4.5 TgN/yr (mean=3.9±0.4,
2.7 TgN/yr for reduced compounds and 1.2 for oxidized compounds), for the Sahel
region.

As reported by Loveland et al. (2000), savannas, open shrublands and grassland
ecosystems are estimated to cover 12.9 millions km2 in the tropical band (see Table 410

for details), excluding Europe, North America and other countries situated poleward of
the tropic of Capricorn and tropic of Cancer. As a consequence, at the global scale, the
global nitrogen deposition flux associated with these ecosystems could range from 11.1
to 14.1 TgN/yr (with a mean value of 12.2±1.7) , with approximately 30% attributed to
oxidized compounds, and the other 70% due to NHx. The global N emission flux would15

range from 10.1 to 12.5 TgN/yr (mean=11.0±1.3), with the same repartition between
oxidized and reduced compounds as for the deposition budget. These values have to
be compared to global emission and deposition estimates: global NOx emission has
been estimated at 44 (30–73) TgN/yr (Galbally et al., 2008), and NH3 global emission
in 1990 has been estimated at 54 (40–70) TgN/yr (Bouwman et al., 1997). Galloway20

et al. (2008) give a 100 TgN/yr for NH3+NOx emission in 1995. Our global estimate
of N compound emissions for savannas reaches 12.2 TgN/yr, which is around 12%
of the estimate of global NH3+NOx emissions cited above. Furthermore, Bouwman
et al. (1997) have estimated the contribution from animal excreta to NH3 emissions
at 21.7 TgN/yr at the global scale, plus 5.9 TgN/yr due to biomass and biofuel com-25

bustion. Our estimate of NH3 emission from volatilization and combustion would give
70% of 12.2 TgN/yr=8.5 TgN/yr in dry savanna ecosystems only. As stated by David-
son and Kingerlee (1997) and Meixner and Yang (2004), these ecosystems constitute
a significant part in the emission of Nitrogen compounds, whereas our knowledge of
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these remote areas is limited by a lack of measurements and studies.

4 Conclusions

This study is a first and original attempt to estimate both deposition and emission fluxes
of nitrogen species in dry savanna ecosystems, using simulated and calculated inven-
tories, and in situ measurements.5

In this study, we have first tried to reproduce the nitrogen oxidized compound emis-
sion and deposition evolution month by month, based on simulated NO biogenic emis-
sion from soils and measured concentrations, at three different IDAF stations in dry
savanna areas during 2006. The magnitude of deposition and emission fluxes is sim-
ilar, but emission begins later than deposition due to a deficit in the sensitivity of the10

emission module at the beginning of the rainy season. An annual budget of reduced
and oxidized N emission and deposition fluxes has therefore been calculated. It gives
a mean estimate of 9.4 (8.6–10.9) kgN ha−1 yr−1 for total deposition, dominated by dry
deposition (58% of the total), and 8.5 (7.8–9.7) kgN ha−1 yr−1 for total emission dur-
ing the year 2006, dominated by NH3 volatilization (67%) and biogenic emission from15

soils (24%), whereas emissions from biomass burning and domestic fires accounts for
9% only. These average fluxes are considered to be representative of dry savanna
ecosystems.

If we make the reasonable assumption that dry savanna (i.e.; open grassland and
open grassland with sparse shrubs) is representative of the main Sahelian vegeta-20

tion type (Mayaux et al., 2003), we can scale up those fluxes to the Sahelian region:
mean emission in the Sahel could reach 3.9 (3.6–4.5) TgN/yr, whereas mean depo-
sition would be 4.3 (3.9–5) TgN/yr. The difference between emission and deposition
gives a net deposition of 0.4 (0.2–0.6) TgN/yr. The uncertainties are numerous, but
they are linked to necessary assumptions considering the small amount of data avail-25

able in this region. Uncertainties correspond to the estimate of the livestock popu-
lation in the Sahel, to the measurements protocol, to the lack of NH3 dry deposition

14211

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14189–14233, 2009

Atmospheric
nitrogen budget in

Sahel

C. Delon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

data in Agoufou, to the deposition velocities assumptions, and to the upscaling of the
ANN algorithm. Furthermore, we have assumed that long range transport of nitro-
gen compounds did not influence local deposition (except wet deposition) at the three
studied stations. If applied to other regions, this assumption has to be carefully re-
considered. Finally, estimates of emission and deposition flux of nitrogen compounds5

at the global scale have been calculated for dry savanna ecosystems (mean deposition
12.2 (11.1–14.1) TgN/yr, mean emission 11.0 (10.1–12.5) TgN/yr). These values are
in the (upper) range of fluxes already estimated in preceding studies, which increases
the robustness of our assumptions, and a high level of confidence in the reliability of
the ANN module in dry savanna areas. The improvement of the ANN module for suit-10

ability in other West African ecosystems (wet savannas, forests) is foreseen in future
research studies.

Furthermore, in order to improve on the assumptions given in this study, in collab-
oration with specialized teams, further measurements are needed to improve the bio-
geochemical description of the soils in arid and semi-arid regions. This is needed to15

better understand the strong release of N compounds at the beginning of the wet sea-
son, despite their low N content, and to improve the quantification of N release to the
atmosphere.

This study, involving original and unique data from remote and seldom explored re-
gions, will be extended to other West African ecosystems in the future.20
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Table 1. Seasonal and annual mean emission and deposition fluxes (in kgN ha−1 yr−1) of oxi-
dized nitrogen compounds in dry savanna stations.

Site Wet season Ox N Dry season Ox N Annual mean Ox N
Deposition Emission Deposition Emission Deposition Emission

Agoufou 2.6±1.2 2.4±0.9 0.7±0.1 1.2±0.1 2.9±1.2 1.7±0.8
Banizoumbou 2.3±0.8 3.8±1.1 1.0±0.7 2.1±1.1 1.9±1.0 2.7±1.4
Katibougou 2.5±0.4 3.4±0.8 1.1±0.6 2.9±1.6 3.0±0.9 3.2±1.2
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Table 2. Annual mean emission and deposition fluxes (in kgN ha−1 yr−1) of reduced nitrogen
compounds for dry savanna stations.

Site Annual mean NHx
Deposition Emission

Agoufou 7.9±1.4 6.1±0.1
Banizoumbou 6.7±1.8 5.4±0.3
Katibougou 5.7±1.6 6.5±0.6
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Table 3. Total emission and deposition fluxes (in kgN ha−1 yr−1) of reduced and oxidized nitro-
gen compounds in dry savanna.

Site Annual mean
Total Deposition Total Emission

Agoufou 10.9±2.7 7.8±0.8
Banizoumbou 8.6±2.7 8.1±1.5
Katibougou 8.7±2.5 9.7±1.6
Average 9.4±1.3 8.5±1.0

14223

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14189/2009/acpd-9-14189-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14189–14233, 2009

Atmospheric
nitrogen budget in

Sahel

C. Delon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 4. Description and area of ecosystems used for N emission estimate calculated in the
tropical band (between the tropics of Capricorn and Cancer).

Cover type Area (km2) Description

Grasslands 2 667 998 Tree and shrub cover≤10%, herbaceous types of cover
Open shrublands 4 397 437 Woody vegetation≤2m with shrub canopy cover between 10–60%
Savannas 5 877 186 Lands with herbaceous and other understorey systems and with forest canopy cover

between 10–30%. Forest cover height≥2m
Total 12 942 621
Excluded countries North America, Europe, Afghanistan ,Algeria, Argentina, Armenia, Aruba, Azerbaijan,
(outside tropics) Bahamas, Bahrain, Bangladesh, Bhutan, China, Egypt, Georgia, Hong Kong, Iran, Iraq, Israel, Japan,

Jordan, Kazakhstan, North and South Korea, Kyrgyzstan, Lebanon,Libya, Mongolia, Morocco, Nepal,
Mariana Islands, Pakistan, Saudi Arabia, South Africa, Syria, Taiwan, Tajikistan, Tunisia, Turkey,
Turkmenistan, Saudi Arabia, South Africa, Syria, Taiwan, Tajikistan, Tunisia, Uruguay, Uzbekistan, Yemen.
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Fig. 1. Simulated biogenic NO flux from soils in kgN ha−1 yr−1 in North West Africa (a) annual
mean, (b) JJAS mean.
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Fig. 2. Monthly evolution of deposition flux (purple line, dry deposition of NO2 and HNO3 +wet
deposition of NO3) and emission flux (blue line, biogenic NO emission from soils+biomass
burining flux+domestic fires flux) in kgN ha−1 yr−1 for IDAF dry savanna stations.
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Fig. 3. Same as Fig. 2, but with precipitation forcing doubled.
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deposition, dd=dry deposition.
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Fig. 8. Emission fluxes at (a) Katibougou (b) Agoufou and (c) Banizoumbou of oxidized (Bio-
genic NO, Biomass burning NOx, Biofuel NOx,) and reduced (Biomass burning NH3, Biofuel
NH3 and volatilized NH3) nitrogen compounds.
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Fig. 9. Mean repartition (and range) of emission and deposition (oxidized and reduced) N
fluxes, scaled up at the Sahelian region (4.6 millions km2).
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